Logarithmic L p Bounds for Maximal Directional Singular Integrals in the Plane

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L Bounds for Singular Integrals and Maximal Singular Integrals with Rough Kernels

Convolution type Calderón-Zygmund singular integral operators with rough kernels p.v. Ω(x)/|x| are studied. A condition on Ω implying that the corresponding singular integrals and maximal singular integrals map L → L for 1 < p < ∞ is obtained. This condition is shown to be different from the condition Ω ∈ H1(Sn−1).

متن کامل

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

Estimates for Maximal Singular Integrals

It is shown that maximal truncations of nonconvolution L-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1, 1) and L bounded for 1 < p < ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the bounded...

متن کامل

Weights for maximal functions and singular integrals

These notes are a guide for the course to be taught at the NCTS 2005 Summer School on Harmonic Analysis in Taiwan. They contain a description of results and sometimes short indications about the proofs. Moreover, each section contains a list of references. For an introduction to the subject it is better to go to the books mentioned in the bibliography at the end of the notes: each one of them i...

متن کامل

p-ESTIMATES FOR SINGULAR INTEGRALS AND MAXIMAL OPERATORS ASSOCIATED WITH FLAT CURVES ON THE HEISENBERG GROUP

The maximal function along a curve (t, γ (t), tγ (t)) on the Heisenberg group is discussed. The L p-boundedness of this operator is shown under the doubling condition of γ ′ for convex γ in R. This condition also applies to the singular integrals when γ is extended as an even or odd function. The proof is based on angular LittlewoodPaley decompositions in the Heisenberg group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2012

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-012-9340-2